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Smartphone Imaging of Subcutaneous Veins
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Objective: The identification of veins by medical person-
nel is a critical skill that is necessary to draw blood or
administer intravenous fluids and medications. Because a
normal consumer camera can act as a multispectral
imaging apparatus, operating with three broadband
detectors, we hypothesized that a standard smartphone
camera might be employed for enhanced visualization of
veins in human skin.

Study: Video and images of subcutaneous veins were
acquired using the rear-facing iSight camera from an
iPhone 6, with a fixed aperture of /2.2, and Sony Exmor RS
back-illuminated CMOS image sensor with pixel genera-
tion of 1.5 microns. A custom program was written for the
iOS operating system that performs a scaled matrix
subtraction of different spectral channels and displays
results as a grayscale image.

Results: A scaled subtraction of green channel pixel
values from red channel pixel values enabled greatly
improved identification of subcutaneous veins. Wave-
lengths of light at which the green detector is most
sensitive (520-580nm) correspond to local absorption
maxima of both oxyhemoglobin (542 and 576nm) and
deoxyhemoglobin (556 nm); consequently, the algorithm
obtained images of light transport weighted toward deeper
skin layers.

Conclusion: We identified and developed a simple
algorithm by which a standard smartphone camera can
be employed for enhanced video-rate visualization of veins
in human skin. Lasers Surg. Med. 50:1034-1039, 2018.
© 2018 Wiley Periodicals, Inc.
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INTRODUCTION

The identification of subcutaneous veins is a critical skill
for phlebotomists, nurses, and physicians. Venous access is
a preferred means of drawing blood samples for laboratory
testing and administering medications or fluid resuscita-
tion in hospitalized patients. Commonly, the subcutaneous
veins of the forearm are used as sites of venous access for
intravenous line insertion. The inability to rapidly obtain
peripheral venous access may lead to delays in the
administration of critical medications, or may necessitate
the use of more invasive forms of venous access having a
higher complication rate, such as central venous catheters.

© 2018 Wiley Periodicals, Inc.

Vein identification is typically accomplished by palpation
and visual inspection; however, it may be challenging to
identify veins in patients with high BMI, dark skin
pigmentation, or small vein caliber.

Human veins appear blue in skin as a result of combined
effects from light absorption by hemoglobin and deoxy-
hemoglobin, wavelength-dependent tissue scattering,
blood oxygenation state, vein diameter and depth, and
human color perception [1]. In order to facilitate vein
visualization, a number of techniques have been proposed.
One approach is to place a light source in close contact with
the skin. Transillumination using a broadband (white)
halogen light source coupled to a C-shaped ring via fiber
optic has been shown to improve the rate of first-attempt
venous cannulation in a pediatric population (Veinlite,
Translite LLC, Sugar Land, TX) [2]. Orange and red LED
light sources have also been used for this purpose. Another
similar approach uses infrared light to illuminate the skin
and generates an image of the infrared reflectance. This
approach takes advantage of the increased depth of
penetration of infrared light, and its absorption by
deoxyhemoglobin in veins. Because the near infrared light
is invisible to the naked eye, the vein pattern is then
projected onto the skin surface using a visible wavelength,
or displayed on a screen [3]. Each of the aforementioned
methods requires a dedicated, specialized detection and/or
illumination device, which increases the cost and difficulty
of implementation. An alternative, multispectral, compu-
tational approach to vein imaging using Wiener spectral
estimation has been previously successfully demonstrated
on a smartphone [4]. We propose a method by which a
standard smartphone camera and a comparatively simple
algorithm can be employed for the enhanced video-rate
visualization of veins in human skin, without prior
calibration or the need for additional computational steps
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such as histogram stretching, as in the aforementioned
Wiener spectral estimation method.

MATERIALS AND METHODS

A custom program was written for the iOS system for
deployment on an iPhone using the Swift programming
language, in which automatic focusing, exposure, and
white balance were left enabled. Images were acquired
using the rear-facing iSight camera from an iPhone 6. The
iSight camera aperture is fixed at {/2.2, and uses a Sony
Exmor RS back-illuminated CMOS image sensor with a
picture element (pixel) generation of 1.5 microns. In order
to obtain an image showing improved contrast of subcuta-
neous veins, the green and red channels of each image were
extracted as spatially co-registered n by n matrices of
equivalent dimensions each containing a range of pixel
values from 0 to 255. A matrix subtraction was performed
in which the value of the green channel is subtracted from
the value of the red channel, and resultant pixel values are
then displayed equivalently on the red, green, and blue
channels of each pixel, yielding a grayscale image in which
subcutaneous veins appear dark against a lighter
background.

In order to provide quantitative and statistical estimates
of enhanced vein visualization, we used pixel intensity
values to calculate relative contrast, standard deviations,
and entropy. For this purpose, color images were converted
to grayscale images following the standard method of
forming a weighted sum of the red (R), green (G), and blue
(B) components: 0.2989*R+0.5870* G +0.1140*B. We-
ber contrast is defined as (Inyin—Ip)/Ip, where I, is the
minimum intensity value and I, is the background
intensity calculated as the average pixel intensity.
Michelson contrast is defined as (I ax—Tmin)/max + Imin)s
where I, is the maximum intensity value. Entropy of the
image is defined as —3p,logs(p,), where n is the number of
gray levels and p,, is the probability associated with the
gray level n.

RESULTS

A scaled subtraction of green channel pixel values from
red channel pixel values enabled improved visualization of
subcutaneous veins of the upper extremity, as seen in
screen images captured from the smartphone application
(Fig. 1). Wavelengths of light at which the green detector is
most sensitive (520—580 nm) correspond to local absorption
maxima of both oxyhemoglobin (542 and 576nm) and
deoxyhemoglobin (556 nm); consequently, the algorithm
obtained images of light transport weighted toward deeper
skin layers, evidenced by the loss of skin surface textural
detail in the scaled images (Fig. 2). Red light was more
strongly absorbed by deoxyhemoglobin than oxyhemoglo-
bin by a factor of 10, enhancing contrast of veins in
surrounding tissue.

An illustration of the algorithm’s application applied
after image capture to a standard RGB image is shown in
Figure 3. The enhanced vein visualization image (Fig. 3c)
reveals the junction of the cephalic and basilic veins, the
proximal portion of the median vein of the forearm, and a

Fig. 1. Ascaled subtraction of green channel pixel values from red
channel pixel values enabled improved visualization of subcuta-
neous veins of the upper extremity, as seen in screen images
captured from the smartphone application: standard RGB and
enhanced visualization images of the (a,b) palm, (¢,d) back of the
hand, and (e,f) forearm, respectively.

variety of small tributary veins unseen in the normal
(Fig. 3a) or grayscale (Fig. 3b) images.

Figure 4 shows pixel intensity values across veins and
surrounding tissue without and after applying scaled
subtraction of the green channel pixel values to images
of the palm. Table 1 shows computations of relative
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Fig. 2. Wavelengths of light at which the green detector is most sensitive (520-580 nm) correspond
tolocal absorption maxima of both oxyhemoglobin (542 and 576 nm) and deoxyhemoglobin (556 nm);
consequently, the algorithm obtained images of light transport weighted toward deeper skin layers,
evidenced by the loss of skin surface textural detail in the scaled images. (a) Depths of light
illumination and camera detection. (b) Imaging and subtraction of deep and superficial skin layers.

contrast values and standard deviations of regions of
interest on the palm as indicated in Figure 4. Table 2
shows computations of the entropy and standard
deviation of the complete images of the palm shown in
Figure 4.

DISCUSSION

While multispectral imaging often utilizes dedicated
equipment, a normal consumer camera is in fact a
multispectral imaging apparatus, operating with three

broadband detectors: red, green, and blue. The camera
image sensor consists of an array of millions of picture
elements (pixels), each with an associated red, green, or
blue bandpass optical filter. The red, green, and blue
components of an image are detected and recorded on
different channels. Using information from these three
channels, it is possible to weight an image toward
visualization of particular skin chromophores based on
their spectroscopic characteristics (which wavelengths of
light they absorb) and the transport of light in skin

~
TP

Fig. 3. Anillustration of the algorithm’s application applied after image capture to an image of skin
obtained from the public domain. (a) Standard PNG RGB image, with the horizontal white arrow
indicating the location of the cephalic vein, the horizontal black arrow indicating the location of the
basilic vein, and the oblique gray arrow indicating the location of a vein at the divergence of the
basilic and cephalic veins from the median vein of the forearm. (b) Grayscale image of the same.
(c) The image obtained by subtracting the intensity values of the green channel of the image from
the intensity values of the red channel of the image and displaying the result as a grayscale image,
revealing the junction of the cephalic and basilic veins, the proximal portion of the median vein of
the forearm, and a variety of small tributary veins unseen in the normal or grayscale images.
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Fig. 4. Profiles of pixel intensity along the lines indicated on (a) normal color, (b) grayscale, and (¢)
enhanced vein visualization images of the palm. Color and enhanced vein visualization images were
obtained with a smartphone in two consecutive shots. The grayscale image was obtained from the color
image. The line profiles shown in (d), (f), and (h) correspond to the red, blue, and magenta lines
depicted on the grayscale image (b), respectively. The line profiles shown in (e), (g), and (i) correspond
to the red, blue, and magenta lines depicted on the enhanced vein visualization image (¢), respectively.
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TABLE 1. Weber and Micheslon Contrast Are Respectively Defined as (I-I,)/ I, and (I nax—Tmin)/Imax + Imin)

Weber contrast

Michelson contrast

Standard deviation

Enhanced vein

Enhanced vein Enhanced vein

ROI Grayscale visualization Grayscale visualization Grayscale visualization
1. Red box -0.22 -0.18 0.28 0.19 16.18 9.29
2. Blue box -0.14 -0.12 0.19 0.14 11.48 6.68
3. Magenta -0.14 -0.15 0.14 0.13 10.61 7.39
box
(scattering and absorption effects from all skin and entropy of the grayscale and enhanced vein visualiza-

chromophores).

The reflectance spectrum of skin is well characterized,
with the greatest contribution from the red region of the
spectrum, and decreased reflectance in the green and blue
due to absorption of these wavelengths by melanin and
hemoglobin. The red channel of a camera images light that
has been scattered through deeper dermal skin structures.
Meanwhile, the wavelengths at which the green channel
detector is most sensitive (roughly 530-545nm) corre-
spond to absorption maxima of both oxy- and deoxyhemo-
globin; as such, green light has a shallower depth of
penetration into skin than red light. By subtracting the
brightness values of the green channel from the brightness
values of the red channel in an image, one may obtain an
image of light transport weighted toward deeper skin
layers. Red light is more strongly absorbed by deoxyhe-
moglobin than oxyhemoglobin, meaning that light trans-
port from the deeper layers of skin will be attenuated over
areas where veins are present.

Because of the strong absorption of the blue channel by
epidermal melanin in the first 100—200 microns of the
skin, the depth of penetration of blue light into the skin is
significantly less than that of green or red light, and is
less useful for the purpose of imaging deeper subcutane-
ous veins. However, isolation of images from this channel
may prove useful for other similar image processing
algorithms, such as highlighting pigmented lesions, or
the absence of pigmentation (in vitiligo or ash leaf spots,
for instance).

In order to provide quantitative and statistical estimates
of enhanced vein visualization, we used pixel intensity
values to calculate relative contrast, standard deviations,

TABLE 2. Entropy and Standard Deviation of the
Grayscale and Enhanced Vein Visualization Images
Shin in Figure Y

Enhanced vein

Grayscale visualization
Entropy 6.32 6.05
Standard deviation 31.03 29.62

Entropy is defined as —3p,logs(p,,) where n is the number of gray
levels and p, is the probability associated with gray level n.
Standard deviation of the pixel intensity values.

tion images of a palm (Fiig. 4). The normal color image of the
palm (Fig. 4a) that contains pixel intensity values from the
red, green, and blue detectors was converted to a grayscale
image. This grayscale image (Fig. 4b) was used for
calculations and comparison to the enhanced vein visuali-
zation image (Fig. 4¢) of the same palm. Figure 4 shows line
profiles of pixel intensity values of the grayscale and
enhanced vein visualization images. Because of the
increased absorption of blood in veins relative to the
surrounding tissue, the location of a vein should corre-
spond to a valley or local minimum in the line profiles
intensity of pixel intensity. This is illustrated in Figure 4
where the horizontal lines in the line profiles indicate the
local minimum in signal that corresponds to vein location
in the images of the palm. Figure 4 also illustrates that
local minima are easier to identify in the enhanced vein
visualization images, Figure 4e, g, and i. This signal
feature is also present in Figure 4d, f, and h, however, it is
embedded in noise generated by combining signals from
the red, blue, and green detectors. Relative contrast values
and standard deviations of intensity computed for the
regions of interest (ROI) depicted in Figure 4b and c are
shown in Table 1. Note that there is more contrast and the
standard deviation is larger in the grayscale image ROIs.
The improvement in vein visualization is not necessarily
higher contrast but rather removing unnecessary infor-
mation. The standard deviation of the ROIs indicates a
reduced dispersion in intensity values of the enhanced vein
visualization images. The global standard deviation and
entropy of the complete enhanced vein visualization image
are also lower, Table 2. Entropy is a statistical measure of
randomness or the amount of disorder in a system, or the
spread of states which a system can adopt. For an image,
the states correspond to the gray levels that a pixel can
have, for example, in an 8-bit pixel image there are 256
states. Lower entropy in an image implies that less states
are occupied and less information content. In our case,
reduced noise and the appropriate information content.

CONCLUSION

In conclusion, we have demonstrated a simple algorithm
by which a smartphone camera may be used to produce
enhanced real-time images of subcutaneous veins. The
basic principle at work may be extended to other situations
in which imaging of particular skin chromophores at a
target depth is desired. Further work to understand the
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performance of the algorithm in a range of clinical subjects
of varying anatomy, skin pigmentation, and BMI will be
necessary in order to fully characterize the algorithm’s
performance and appropriateness for use in various
clinical settings. Of note, the source of illumination in a
typical clinical setting is typically broadband, but will vary
based on whether illumination is accomplished by sun-
light, mercury fluorescent lamp, incandescent lamp, LED
lamp, or flash. In our experience, this did not significantly
alter the utility of the algorithm, though specular reflection
or glare can limit the technique’s performance.
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